Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(3): 2987-2994, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32901409

RESUMO

In La Glacière cave (France), the touristic activity has been conducted to an environmental parameter change that has led to photosynthetic organism proliferation (microalgae, diatoms, cyanobacteria, bryophytes). The present study is focused on bryophyte development occurring in the show cave that was responsible of limestone biodeterioration. In order to understand the colonization process of limestone, we have maintained limestone blocks under optimal Lampenflora growth conditions. Moreover, some limestone blocks were painted with several pigments that were used in the prehistory (e.g., red ocher, bone char). Microorganisms and bryophyte growth were monitored during 1 year, and then, the block samples were treated using UV-C light (254 nm). Thus, obtained results were compared with in situ treatment in La Glacière cave. Results have showed dense bryophyte propagation on the several blocks. However, the growth rate was correlated with the chemical composition of the pigment. In fact, the presence of some chemical elements such as As, Cr, Ti, and Co contributed to reduce bryophyte growth. Finally, moss treatment using UV-C light has demonstrated high efficiency under in situ condition, while a fast recolonization has been observed for samples maintained in laboratory. This difference was explained by the high bryophyte density under laboratory conditions that make UV-C light penetration difficult.


Assuntos
Biofilmes , Briófitas , Cavernas , França , Raios Ultravioleta
2.
Environ Sci Pollut Res Int ; 24(31): 24611-24623, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28913680

RESUMO

Ultra-violet C (UV-C) treatment is commonly used in sterilization processes in industry, laboratories, and hospitals, showing its efficacy against microorganisms such as bacteria, algae, or fungi. In this study, we have eradicated for the first time all proliferating biofilms present in a show cave (the La Glacière Cave, Chaux-lès-Passavant, France). Colorimetric measurements of irradiated biofilms were then monitored for 21 months. To understand the importance of exposition of algae to light just after UV radiation, similar tests were carried out in laboratory conditions. Since UV-C can be deleterious for biofilm support, especially parietal painting, we investigated their effects on prehistoric pigment. Results showed complete eradication of cave biofilms with no algae proliferation observed after 21 months. Moreover, quantum yield results showed a decrease directly after UV-C treatment, indicating inhibition of algae photosynthesis. Furthermore, no changes in pigment color nor in chemical and crystalline properties has been demonstrated. The present findings demonstrate that the UV-C method can be considered environmentally friendly and the best alternative to chemicals. This inexpensive and easily implemented method is advantageous for cave owners and managers.


Assuntos
Biofilmes/efeitos da radiação , Cavernas , Raios Ultravioleta , Bactérias/efeitos da radiação , Cavernas/microbiologia , França , Fungos/efeitos da radiação , Pinturas , Fotossíntese/efeitos da radiação , Esterilização/métodos
3.
Environ Sci Pollut Res Int ; 24(27): 21601-21609, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28752304

RESUMO

A laboratory investigation of UV-C effects was conducted over a 62-h period: a much higher dose than in classic UV-C treatment was applied to five pigments and two painting binders used by prehistoric humans. Colorimetric parameters were compared to a control to see if UV-C can change pigment and binder color. Infrared spectroscopy, scanning electron microscopy, inductively coupled plasma and X-ray crystallography were also carried out to confirm colorimetric measurement. In order to understand how microorganism may physically deteriorate paintings, limestone blocks were painted and monitored until their complete colonization by algae, cyanobacteria, fungi and/or mosses. The results show that UV-C has no effect on mineral compounds. Conversely, it is noteworthy that binder color changed under both UV-C light conditions as well as in visible light. Concerning painted blocks, a fast proliferation has been observed with deterioration of the paintings. These results show the high importance of treating biofilm as soon as possible. Moreover, these findings may be a promising avenue inducing cave managers to use friendly UV-C light to treat contaminated cave paintings and also in the prevention of biodeterioration by lampenflora.


Assuntos
Biofilmes/efeitos da radiação , Pintura/efeitos da radiação , Pinturas/história , Raios Ultravioleta , Cavernas , Cianobactérias , História Antiga , Humanos , Microscopia Eletrônica de Varredura , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...